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Critical behavior of a one-dimensional diffusive epidemic process
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~Received 1 December 2000; revised manuscript received 7 March 2001; published 22 May 2001!

We investigate the critical behavior of a one-dimensional diffusive epidemic propagation process by means
of a Monte Carlo procedure. In the model, healthy~A! and sick ~B! individuals diffuse on a lattice with
diffusion constantsDA andDB , respectively. According to a Wilson renormalization calculation, the system
presents a second-order phase transition between a steady reactive state and a vacuum state, with distinct
universality classes for the casesDA5DB and DA,DB . A first-order transition has been conjectured for
DA.DB . In this work we perform a finite size scaling analysis of order parameter data at the vicinity of the
critical point in dimensiond51. Our results show no signature of a first-order transition in the case ofDA

.DB . A finite size scaling typical of second-order phase transitions fits well the data from all three regimes.
We found that the correlation exponentn52 as predicted by field-theoretical arguments. Estimates forb/n are
given for all relevant regimes.

DOI: 10.1103/PhysRevE.63.066118 PACS number~s!: 05.70.Jk, 64.60.Ht, 05.70.Ln
n
na
io

ra
d

c
et
m
pr
na
ns
ct

es
ify
ne

n
th

t

e

e
ed
a
uc

ic

n

tial

e is

of
y

rel-

he
ase
by
l-
r-
tal
ur-
the
la-
cy

ns
es,

d
ey
ith
I. INTRODUCTION

The critical behavior of nonequilibrium reaction-diffusio
systems describes relevant features of several phenome
physics, chemistry, and biology, such as directed percolat
surface reactions, and epidemic propagation processes@1#. In
general, these systems present a second-order phase t
tion between a vacuum state, where the order parameter
sity vanishes, to a steady reactive state@2–9,11#. At high
dimensions where fluctuations on the particles densities
be neglected, these systems can be modeled by a s
mean-field-like differential equations. On the other hand,
croscopic stochastic models defined on a lattice have
vided a more accurate description of low-dimensio
diffusion-limited reactions. Extensive numerical simulatio
@4,5# and analytical methods, such as mapping on exa
solvable quantum spin chains@6#, real-space@7#, field-
theoretic@8,9#, and Wilson renormalization group techniqu
@10# have shown that density fluctuations strongly mod
the mean-field picture of a large class of such critical o
dimensional nonequilibrium kinetic models@11#.

Recently, the propagation of an epidemic process i
population of fluctuating density has been studied using
Wilson renormalization group method@10#. The model can
be considered as a two-species contactlike process@12–14#.
In this model healthy and sick individuals (A andB particles!
diffuse independently with diffusion constantsDA and DB .
Upon contact, sick individuals may infect healthy ones a
rate k1. They also can spontaneously recover at a ratek2.
Therefore, a competition between the contamination proc
~creation ofB particles! and the recovery process~annihila-
tion of B particles! takes place. For low concentrations of th
average total densityr, the stationary state is characteriz
by a global extinction of the epidemics. Above a critic
densityrc there is a stable steady-state regime with a fl
tuating finite density of sick individuals. Nearrc the system
exhibits a phase transition with the average density of s
individualsrB acting as the order parameter.

This model can be formulated as a reaction-diffusio
decay processA1B→2B, B→A. In a mean-field approach
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it can be described by the set of partial nonlinear differen
equations

]rA

]t
5DA¹2rA1k2rB2k1rArB , ~1!

]rB

]t
5DB¹2rB2k2rB1k1rArB . ~2!

For homogeneous initial conditions, the stationary stat
easily found to consist of onlyA ~healthy! particles below a
total density threshold ofrc

m f5(k1 /k2)21. Above this point,
the density ofB ~sick! particles assumes a stationary value
rB5(r2rc

m f)b, with b51. The relaxation to the stationar
state at criticality behaves asymptotically asrB}t2b/zn, with
b/zn51.

However, fluctuations in the particle densities become
evant below the upper critical dimensiondc54 and correc-
tions to the mean-field picture have to be introduced. T
critical properties of the stationary state for the special c
of DA5DB falls in the same universality class studied
Kree et al. in the context of a population density in a po
luted environment@15#. This process can also be characte
ized by the coupling between the fluctuations in the to
density and the density of the species that is trying to s
vive. If fluctuations in the total density are suppressed,
transition falls in the universality class of directed perco
tion whose critical exponents are known with high accura
in d51 to be n51.097, b50.2769, z50.636 (b/zn
50.3968). Taking into account the total density fluctuatio
and using field-theoretic renormalization group techniqu
Kree et al. @15# computed the critical exponents to beh5
2e/8 in first order ine542d, n52/d andz52 in all orders
in e.

In a recent work, van Wijlandet al. @10# have shown that
for DA,DB the critical behavior is governed by a new fixe
point. Within a Wilson renormalization group approach th
found that the transition falls in a new universality class w
exponents given byn52/d, h50 @b5n(d1h)/251# and
z52 ~in all orders ine). In the opposite case ofDA.DB the
©2001 The American Physical Society18-1
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renormalization group equations do not have a fixed po
and they have conjectured the possible existence o
fluctuation-induced first-order transition in this regime. R
cent Monte Carlo simulations ind52 have shown some sig
natures of the occurrence of such discontinuous transitio
this regime@16#.

The d51 version of the symmetricDA5DB case has
been recently investigated in a Monte Carlo simulation by
Freitaset al. @17#. They reportedb/n50.197(2). By fitting
extrapolated order parameter data away from the crit
point, where finite size and critical slowing down problem
are less severe, they foundb50.435(10) andn52.21(5).
The reported value ofb is quite above the directed percol
tion value. More importantly, the value ofnÞ2, indicates
that higher-order symmetry breaking terms in the functio
action seem to be relevant below dimensiond52 or, alter-
natively, that corrections to scaling are relevant for the s
tem sizes simulated@18,19#.

In this work we perform a Monte Carlo simulation of th
above diffusion-reaction-decay process ind51 for all three
relevant regimes in order to give precise estimates of
equilibrium critical exponents and to check the conjectu
emergence of a first-order transition forDA.DB . We will
use a finite size scaling analysis of order parameter dat
precisely locate the critical point and to directly compute
critical exponentsb/n andn. These will be compared with
previous Monte Carlo estimates, thee-expansion renormal
ization group prediction and thed51 directed percolation
universality class.

II. MICROSCOPIC SIMULATION ALGORITHM
AND RESULTS

In our simulations we initially distribute at random a
equal number ofA and B particles among theN sites of a
chain with periodic boundary conditions. We consider ea
site as being a locus where an arbitrary number of parti
can be located, i.e., the particles do not have a hard-
repulsive potential. The contamination process takes p
only whenA andB particles are found on the same site. T
whole diffusion-reaction-decay process is done in th
stages. In the first one we consider only the diffusive moti
ParticlesA andB are chosen to move with probabilitiespA
and pB , respectively~which take the role of the diffusion
constantsDA andDB). Once a particle is chosen to move,
06611
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is displaced to one of the two neighboring sites with eq
probability ~unbiased diffusive motion!. In the next stage we
consider only the contamination process. EachA particle that
is in the same site of at least oneB particle will be trans-
formed in aB particle with probabilityk1 ~the contamination
rate!. In the last stage eachB particle can be replaced by a
A particle with probabilityk2 ~recovering rate!. Our simula-
tions are performed usingk15k251/2. The time unit will be
considered as the time needed to perform the above t
stages over all particles.

At the steady state regime of finite size systems,rB fluc-
tuates around a plateau value for a very long time until
incidental fluctuation leads the system irreversibly to t
vacuum state ofrB50. These fluctuations become more fr
quent as the system approaches the critical densityrc . These
incidental fluctuations towards the vacuum state are
present in the thermodynamical limit. Usually, averaging
limited to the surviving samples, as done in@17#. This pro-
cedure leads to an increase of statistical fluctuations w
time due to the decrease of surviving samples, espec
below the critical density where the plateau is very low
finite samples. In this work we choose to use a differe
approach to this problem. We make the absorbing proc
reversible by replacing a randomly chosen healthy individ

FIG. 1. A typical time evolution of the number of infected in
dividuals near criticality. Data are from a chain of 400 sites,pA

50.5, pB50.25, andr54.75~see Table I!. The initial state has the
same density of sick and healthy individuals. Notice that after be
revived from an incidental fluctuation, the system returns to os
late around a plateau. The relaxation timet r is estimated as the
typical crossover time between the initial relaxation and the os
latory behavior. Time is measured in units of lattice sweeps.
io
ion and

n the
TABLE I. The present finite size scaling estimates of the critical concentration and the exponent ratb/n
together with the renormalization group predictions. The absence of signatures of a first-order transit
the large value ofb/n found from the continuous transition hypothesis forDA.DB , together with the fact
that bÞ1 for DA,DB , indicate that higher-order terms on the action functional must be considered i
renormalization group analysis ind51.

Diffusive regime rc b/n ~Present MC! b/n ~Field theory!

DA.DB (pA50.5; pB50.25) 4.75(1) 0.336(15) First-order transition

DA5DB (pA50.5; pB50.5) 4.24(1) 0.226(20)
d2e/8

2
50.3125 in d51

DA,DB (pA50.5; pB50.75) 3.93(1) 0.165(22) 1/2~all orders ine expansion!

aReferences@10,15,16#.
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by a sick one whenever the system reaches the vacuum s
Therefore, within the same run the system returns its os
latory behavior around the plateau and no runs have to
disregarded. A typical time evolution of the number of i
fected individuals near criticality is shown in Fig. 1. Th
procedure allows us to go well inside the vacuum ph
which, in finite size simulations, appears as a long tail in
equilibrium densityrB . Usually, the average time betwee
two consecutive incidental fluctuations towards the vacu
state is much larger than the relaxation time, except w
inside the vacuum phase where both are of the order of a
time steps. The critical indices can be obtained after a fi
size analysis is employed to achieve the proper thermo
namical limit. For the symmetric case ofpA5pB , the critical
indexb/n obtained by the present procedure is in agreem
with, although slightly above~see Table I!, the one reported
in @17# where the surviving sampling technique was e
ployed.

In Fig. 2 we show a typical plot of the average relati
density of sick individualsrB /r at the stationary regime ver
sus the total densityr for a system of linear sizeN5400,
pA50.5, andpB50.25. For each concentrationr, the sta-
tionary state was assumed to have been reached after 1
time steps~lattice sweeps!, which is about eight times the
relaxation time near criticality. For this case ofDA.DB , the
Wilson renormalization group results in first order ine54
2d predict the emergence of a first-order transition. W
searched for a hysteresis loop that could sign such dis
tinuous transition by performing very slow cycles
increase/decrease of the total density~two particles were
increased/decreased at each cycle step!. The average cycle
presented no hysteresis loop within our numerical accura
However, the absence of hysteresis in Monte Carlo sim
tions of finite systems near a first-order transition can be
to jumps between the branches when long runs are con
ered. We further measured the equilibrium distribution fun

FIG. 2. The stationary value ofrB /r as a function of the tota
density for pA50.5 andpB50.25. For each concentrationr, the
stationary state was assumed to have been achieved after 1
time steps~lattice sweeps!, which is around 8t r near criticality.
After that 400 consecutive microscopic configurations were use
account for some of the temporal fluctuations. Although the pres
method allows us to use the same run to proceed with the avera
process~leaving a convenient time interval between success
measurement blocks to generate uncorrelated configurations!, we
choose to average the whole procedure over 3200 distinct rea
tions. In the inset we show the size dependence ofrB /r at the
vicinity of the critical point~from top to bottomL5100,200,400).
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tion P(rB) near the transition whereP(rB)drB is the frac-
tion of equilibrium configurations with the density of sic
individuals betweenrB andrB1drB . In the case of a well
defined first-order transitionP(rB) is expected to exhibit two
peaks signaling the coexisting phases. However, in all th
regimesP(rB) depicts a single peak structure~see Fig. 3!.
These results point out to the possibility of the activ
inactive transition being also continuous forDA.DB in d
51 or, alternatively, of it being a very weak first-order on
Assuming that the continuous transition scenario holds wh
ever the relationpA /pB , we will perform in the following a
finite size scaling analysis of our data to estimate the crit
indices of the emerging universality classes.

To precisely estimate the critical densityrc we assume
that the order parameterrB satisfies the scaling relation

rB~r,L !5L2b/n f @L1/n~r2rc!#. ~3!

The preceding relation implies that the set of auxiliary fun
tions

g~L,L8,r!5 ln@rB~L,r!/rB~L8,r!#/ ln~L/L8! ~4!

intersects in a single point (rc ,b/n). In Fig. 4 we plot
g(L,L8,r) for several lattice sizes and for the particular ca
of pA50.5 andpB50.25. From the intersection we estima

800

to
nt
ing
e

a-

FIG. 3. The distribution functionP(rB /r) versusrB /r at criti-
cality for pA50.5 andpB50.25 ~continuous line!, pB50.5 ~dotted
line!, andpB50.75 ~dashed line!. The critical concentrations use
are listed in the table. 106 consecutive configurations after relax
ation were considered. The single peak structure points towar
continuous transition on all three regimes.

FIG. 4. The functiong(L,L8,r) versus r for several pairs
(L,L8) and pA50.5, pB50.25. The common point determinesrc

andb/n.
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the critical densityrc54.75(1). Similar data were obtained
for the cases ofpB50.5 andpB50.75, giving rise, respec
tively, to rc54.24(1) andrc53.93(1). Error bars were es
timated from the spread of the intersections of curves w
all possible pairs (L,L8). Estimates forb/n on all three
cases can also be obtained from these intersections. Th
sults are summarized in Table I where error bars include
error in the estimates ofrc . For the symmetric case th
presently reported value ofb/n50.226(20) is slightly above
the one reported by de Freitaset al., b/n50.197(2) @17#,
where an efficient algorithm specifically designed for th
case was employed. Further intensive numerical work wo
be required to bring these two estimates more together.
actual order parameter data atrc are shown in Fig. 5 as a
function of the lattice sizeL. The data indicate that correc
tions to scaling in the order parameter are not relevant for
system sizes simulated. All three cases display clear pow
law decays ofrB(rc ,L) typical of continuous transitions.

The correlation exponentn can be estimated by the siz
dependence of (1/CB)dCB /drurc

}L1/n, whereCB5rB /r.
Our results are depicted in Fig. 6. The small curvature of
plotted data~especially forDA5DB) indicates that a smal
correction to scaling is present. In order to verify t
renormalizaton group result thatn52/d, we fitted our
data considering a first-order correction to scali
@(1/CB)dCB /drurc

}L1/2(11a0 /L)#. The fits fully support

that n52 for all three universality classes.

III. SUMMARY AND CONCLUSIONS

We have employed a finite size scaling analysis of Mo
Carlo data for a diffusion-limited two-particle reaction th
mimics the process of an epidemic propagation. A ph
transition takes place between a steady state and a vac
state as a function of the total particle density. Previo
renormalization group results have shown that the crit

FIG. 5. ln(rB /r) versus lnL at the critical point for the threes
relevant regimes. The straight lines are the fits torB /rurc

}L2b/n.
nd
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behavior depends of the relative mobility of the particles.
discontinuous transition is anticipated when sick individu
(B particles! diffuse slower than healthy ones (A particles!
@10#. Previous Monte Carlo studies ind52 have shown
some signatures of such first-order transitions@16#. A con-
tinuous transition occurs forDA<DB with the correlation
exponentn52/d and the dynamical exponentz52. How-
ever, distinct universality classes in the symmetric (DA
5DB) and asymmetric (DA,DB) cases are predicted. I
particular the order parameter exponentb was found to reach
the mean field valueb51 for the asymmetric case in a
orders ine542d.

The present results ind51 corroborate the renormaliza
tion group prediction that the correlation exponentn52.
However, our results did not show any evidence of the c
jectured first-order transition in the case ofDA.DB . Al-
though we cannot completely rule out the possibility of
very weak first-order transition, the data in this case a
exhibit a finite size scaling typical of a second-order pha
transition with a new class of critical exponents. Furth
more, for the case ofDA,DB the field-theory prediction of
b51 is also not supported. These two results clearly indic
that the truncated higher-order terms on the action functio
employed in the field-theoretical analysis are relevant ind
51. It would be valuable to have these terms included i
future field-theoretical analysis of this low-dimensional sy
tem in order to have reliable analytical estimates for the
set of critical exponents on all relevant regimes.
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FIG. 6. ln@(1/CB)dCB /dr# versus lnL at the critical point for
the three relevant regimes (CB5rB /r). The lines are fits consid-
ering a first-order correction to scaling~see text!. These corroborate
the renormalization group prediction thatn52.
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