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Critical behavior of a one-dimensional diffusive epidemic process
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We investigate the critical behavior of a one-dimensional diffusive epidemic propagation process by means
of a Monte Carlo procedure. In the model, heali#y and sick(B) individuals diffuse on a lattice with
diffusion constant® , andDg, respectively. According to a Wilson renormalization calculation, the system
presents a second-order phase transition between a steady reactive state and a vacuum state, with distinct
universality classes for the casBs,=Dg and D,<Dg. A first-order transition has been conjectured for
D,>Dg. In this work we perform a finite size scaling analysis of order parameter data at the vicinity of the
critical point in dimensiord=1. Our results show no signature of a first-order transition in the cage,of
>Dg. A finite size scaling typical of second-order phase transitions fits well the data from all three regimes.
We found that the correlation exponent 2 as predicted by field-theoretical arguments. Estimategforare
given for all relevant regimes.
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[. INTRODUCTION it can be described by the set of partial nonlinear differential
equations
The critical behavior of nonequilibrium reaction-diffusion
systems describes relevant features of several phenomena in pa )
physics, chemistry, and biology, such as directed percolation, ot DaVZpatkapg—kipaps. @

surface reactions, and epidemic propagation procéi$ds

general, these systems present a second-order phase transi- 9ps

tion between a vacuum state, where the order parameter den- e DgV2pg—kopg+Kipaps - (2

sity vanishes, to a steady reactive stf2e-9,11. At high

dimensions where fluctuations on the particles densities can

be neglected, these systems can be modeled by a set é’é

mean-field-like differential equations. On the other hand, mi

croscopic stochastic models defined on a lattice have pr

e e o S~ (', Wi -1 The refaaton 1 he staonary
. j ) state at criticality behaves asymptotically@s<t ~#/?", with

[4,5] and analytical methods, such as mapping on exactl;l/glzyzl_

solvablg quantum spin chaing], _reql-space[?], f'el(_j' However, fluctuations in the particle densities become rel-
theoretic[8,9], and Wilson renormalization group techniques evant below the upper critical dimensida=4 and correc-

[10] have shown that density fluctuations strongly modifyjong to the mean-field picture have to be introduced. The
the mean-field picture of a large class of such critical oneyitical properties of the stationary state for the special case
dimensional nonequilibrium kinetic mode]l$1]. of D,=Dj falls in the same universality class studied by
Recently, the propagation of an epidemic process in &ree et al. in the context of a population density in a pol-
population of fluctuating density has been studied using th@uted environmenf15]. This process can also be character-
Wilson renormalization group methdd0]. The model can ized by the coupling between the fluctuations in the total
be considered as a two-species contactlike proiEss14.  density and the density of the species that is trying to sur-
In this model healthy and sick individualé @ndB particle3  vive. If fluctuations in the total density are suppressed, the
diffuse independently with diffusion constarilg, andDg. transition falls in the universality class of directed percola-
Upon contact, sick individuals may infect healthy ones at dion whose critical exponents are known with high accuracy
rate k;. They also can spontaneously recover at a kgte in d=1 to be »=1.097, 8=0.2769, z=0.636 (B/zv
Therefore, a competition between the contamination process 0.3968). Taking into account the total density fluctuations
(creation ofB particleg and the recovery procesannihila- and using field-theoretic renormalization group techniques,
tion of B particleg takes place. For low concentrations of the Kree et al. [15] computed the critical exponents to he=
average total density, the stationary state is characterized — €/8 in first order ine=4—d, v=2/d andz=2 in all orders
by a global extinction of the epidemics. Above a critical in e.
density p. there is a stable steady-state regime with a fluc- In a recent work, van Wijlanét al.[10] have shown that
tuating finite density of sick individuals. Neag. the system for D ,<<Dg the critical behavior is governed by a new fixed
exhibits a phase transition with the average density of siclpoint. Within a Wilson renormalization group approach they
individuals pg acting as the order parameter. found that the transition falls in a new universality class with
This model can be formulated as a reaction-diffusion-exponents given by=2/d, »=0 [ 8=v(d+ 7)/2=1] and
decay proceséd+B—2B, B—A. In a mean-field approach z=2 (in all orders in¢). In the opposite case &f,>Dg the

For homogeneous initial conditions, the stationary state is
sily found to consist of onb (healthy particles below a
‘total density threshold qu‘f:(kl/kz)‘l. Above this point,
he density oB (sick) particles assumes a stationary value of
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renormalization group equations do not have a fixed point
and they have conjectured the possible existence of a
fluctuation-induced first-order transition in this regime. Re-
cent Monte Carlo simulations ih=2 have shown some sig-
natures of the occurrence of such discontinuous transition in
this regime[16].

The d=1 version of the symmetri®,=Dg case has
been recently investigated in a Monte Carlo simulation by de
Freitaset al. [17]. They reported3/v=0.1972). By fitting
extrapolated order parameter data away from the critical
point, where finite size and critical slowing down problems
are less severe, they foung=0.435(10) andv=2.21(5).

The reported value o8 is quite above the directed percola-  FIG. 1. A typical time evolution of the number of infected in-
tion value. More importantly, the value of# 2, indicates dividuals near criticality. Data are from a chain of 400 sitpg,
that higher-order symmetry breaking terms in the functionak0.5, p;=0.25, andp=4.75(see Table)l The initial state has the
action seem to be relevant below dimenstn?2 or, alter-  same density of sick and healthy individuals. Notice that after being
natively, that corrections to scaling are relevant for the sysrevived from an incidental fluctuation, the system returns to oscil-
tem sizes simulatefil8,19. late around a plateau. The relaxation timeis estimated as the
In this work we perform a Monte Carlo simulation of the typical crossover time between the initial relaxation and the oscil-
above diffusion-reaction-decay procesddin 1 for all three  latory behavior. Time is measured in units of lattice sweeps.
relevant regimes in order to give precise estimates of the
equilibrium critical exponents and to check the conjectureds displaced to one of the two neighboring sites with equal
emergence of a first-order transition for,>Dg. We will ~ Probability (unbiased diffusive motionIn the next stage we
use a finite size scaling analysis of order parameter data teensider only the contamination process. EAgtarticle that
precisely locate the critical point and to directly compute theis in the same site of at least oeparticle will be trans-
critical exponents3/v and v. These will be compared with formed in aB particle with probabilityk; (the contamination
previous Monte Carlo estimates, tkeexpansion renormal- rate. In the last stage ead particle can be replaced by an
ization group prediction and theé=1 directed percolation A particle with probabilityk, (recovering rate Our simula-
universality class. tions are performed usinig =k, =1/2. The time unit will be
considered as the time needed to perform the above three
IIl. MICROSCOPIC SIMULATION ALGORITHM stages over all particles. o
AND RESULTS At the steady state regime of finite size systelmasﬂuc-.
tuates around a plateau value for a very long time until an
In our simulations we initially distribute at random an incidental fluctuation leads the system irreversibly to the
equal number ofA and B particles among th&\ sites of a  vacuum state opg=0. These fluctuations become more fre-
chain with periodic boundary conditions. We consider eaclgquent as the system approaches the critical depsityThese
site as being a locus where an arbitrary number of particlemcidental fluctuations towards the vacuum state are not
can be located, i.e., the particles do not have a hard-congresent in the thermodynamical limit. Usually, averaging is
repulsive potential. The contamination process takes plackmited to the surviving samples, as done[it77]. This pro-
only whenA andB particles are found on the same site. Thecedure leads to an increase of statistical fluctuations with
whole diffusion-reaction-decay process is done in threg¢ime due to the decrease of surviving samples, especially
stages. In the first one we consider only the diffusive motionbelow the critical density where the plateau is very low in
ParticlesA and B are chosen to move with probabilitigs,  finite samples. In this work we choose to use a different
and pg, respectively(which take the role of the diffusion approach to this problem. We make the absorbing process
constantdD , andDg). Once a particle is chosen to move, it reversible by replacing a randomly chosen healthy individual

Ng(t)

TABLE |. The present finite size scaling estimates of the critical concentration and the exponegt ratio
together with the renormalization group predictions. The absence of signatures of a first-order transition and
the large value of3/v found from the continuous transition hypothesis Bx>Dg, together with the fact
that B# 1 for Do<Dg, indicate that higher-order terms on the action functional must be considered in the
renormalization group analysis oh=1.

Diffusive regime Pe Blv (Present MG Blv (Field theory
D,>Dg (pa=0.5; pg=0.25) 4.75(1) 0.336(15) First-order transition
DA=Dg (pA=05: ps=05)  4.24(1) 0.226(20) 03125 ind-1
D,<Dg (pa=0.5; pg=0.75) 3.93(1) 0.165(22) 1/@all orders ine expansion

8Reference$10,15,18.
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FIG. 2. The stationary value ¢fg/p as a function of the total
density forpa=0.5 andpg=0.25. For each concentratign the FIG. 3. The distribution functio(pg/p) versuspg/p at criti-
stationary state was assumed to have been achieved after 12 86ality for p,=0.5 andpg=0.25 (continuous ling pg=0.5 (dotted
time steps(lattice sweeps which is around 8, near criticality.  line), andpg=0.75 (dashed ling The critical concentrations used

After that 400 consecutive microscopic configurations were used tare listed in the table. f0consecutive configurations after relax-
account for some of the temporal fluctuations. Although the preseration were considered. The single peak structure points towards a
method allows us to use the same run to proceed with the averagirgpntinuous transition on all three regimes.

process(leaving a convenient time interval between successive

measurement blocks to generate uncorrelated configurgtiores  tion P(pg) near the transition wherB(pg)dpg is the frac-
choose to average the whole procedure over 3200 distinct realizaion of equilibrium configurations with the density of sick
tions. In the inset we show the size dependence®fp at the individuals betweempg andpg+dpg. In the case of a well
vicinity of the critical point(from top to bottomlL =100,200,400).  defined first-order transitioR(pg) is expected to exhibit two

. eaks signaling the coexisting phases. However, in all three
by a sick one whenever the system reaches the vacuum sta; ggimesP(pB) depicts a single peak structufsee Fig. 3

lTrt\erefgreh, thhm the Zame rlet the sysdtem returnrs] Its ?SCgThese results point out to the possibility of the active/
e e ot e . PacVe ansion beng 50 contos 05~ o
g ' yp =1 or, alternatively, of it being a very weak first-order one.

fer((:)tézg dbr;g'v;ﬂ(u)jvlg Bgatrocngcajgﬁ Iif]s?ggvmemv;ﬂhr}{ TE:S Assuming that the continuous transition scenario holds what-
P 9 P ver the relatiorp,/pg, we will perform in the following a

Wh'?h’ n finite size simulations, appears as a .Iong tail in thefinite size scaling analysis of our data to estimate the critical
equilibrium densitypg. Usually, the average time between indices of the emerging universality classes.

two cqnsecutlve incidental fluctuanons_ tow_ards the vacuum To precisely estimate the critical densipy we assume
state is much larger than the relaxation fime, except Wel{hat the order parameter satisfies the scaling relation
inside the vacuum phase where both are of the order of a few b P 9
time steps. The critical indices can be obtained after a finite pa(p,L)=L ALY (p—po)]. 3)
size analysis is employed to achieve the proper thermody-

namical limit. For the symmetric case pf=pg, the critical ~ The preceding relation implies that the set of auxiliary func-
index B/v obtained by the present procedure is in agreementions

with, although slightly abovésee Table)l, the one reported

in [17] where the surviving sampling technique was em- g(L,L",p)=In[pa(L,p)/ps(L",p))/IN(L/L")  (4)
ployed. . . : . :

In Fig. 2 we show a typical plot of the average relative INtersects in a single pointp(,8/v). In Fig. 4 we plot
density of sick individualgg/p at the stationary regime ver- 9(L;L",p) for several lattice sizes and for the particular case
sus the total density for a system of linear siz&l=400, of po=0.5 andpg=0.25. From the intersection we estimate
pa=0.5, andpg=0.25. For each concentratign the sta-
tionary state was assumed to have been reached after 12 800 — e
time steps(lattice sweeps which is about eight times the T Lt 200
relaxation time near criticality. For this case@f>Dg, the :
Wilson renormalization group results in first order dr-4
—d predict the emergence of a first-order transition. We
searched for a hysteresis loop that could sign such discon-
tinuous transition by performing very slow cycles of
increase/decrease of the total denditwo particles were
increased/decreased at each cycle )stépe average cycle -0‘54 65 4'70 4'75 4'80
presented no hysteresis loop within our numerical accuracy. ' ) ’ '

However, the absence of hysteresis in Monte Carlo simula-

tions of finite systems near a first-order transition can be due FIG. 4. The functiong(L,L’,p) versusp for several pairs
to jumps between the branches when long runs are consi@t,L’) and p,=0.5, pg=0.25. The common point determings
ered. We further measured the equilibrium distribution func-and g/v.

-0.2

— — L=100, L'=400)
=03 f|--. L=150, L"=200
—— L=150, L’=400)

g(L,L’.p)
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FIG. 5. In(pg/p) versus IrL at the critical point for the threes FIG. 6. If(1/¥g)dW¥g/dp] versus IrL at the critical point for
relevant regimes. The straight lines are the fitpgdp|, >L ™ #".  the three relevant regimeslg=pg/p). The lines are fits consid-

ering a first-order correction to scalirigee text These corroborate
the critical densityp.=4.751). Similar data were obtained the renormalization group prediction that 2.
Iic\)/relt;etg iscisff f( 1)0 ':ngsff %921)5 g\r/(;r:gbgrsse\,lv;erngg_ behavior depends of the relative mobility of the particles. A
timated from the spread of the intersections of curves Wiﬂplscont!nuous.tran3|t|0n is anticipated when sick |n_d|V|duaIs
all possible pairs I(,L'). Estimates forg/v on all three (B parucle;) diffuse slower than hgalthy oneg\ (particles
cases can also be obtained from these intersections. The fg-0)- Previous Monte Carlo studies id=2 have shown
sults are summarized in Table | where error bars include th§°Me Signatures of such first-order transitigh6]. A con-
error in the estimates ob.. For the symmetric case the tinuous transition occurs foDAs_DB with the correlation
presently reported value @ v=0.226(20) is slightly above ©€XPonentr=2/d and the dynamical exponeat=2. How-
the one reported by de Freitas al, 8/v=0.197(2)[17], ever, distinct unlvers_allty classes in the symm_etrlDA(
where an efficient algorithm specifically designed for this~ Ds) and asymmetric R,<Dg) cases are predicted. In
case was employed. Further intensive numerical work wouldarticular the order parameter expongnwas found to reach
be required to bring these two estimates more together. THE€ mean field valugg=1 for the asymmetric case in all
actual order parameter data @t are shown in Fig. 5 as a °rders ine=4—d. _ _
function of the lattice sizé.. The data indicate that correc- _ 1h€ present results id=1 corroborate the renormaliza-
tions to scaling in the order parameter are not relevant for thlon group prediction that the correlation exponent 2.
system sizes simulated. All three cases display clear poweffowever, our results did not show any evidence of the con-
law decays ofpg(p.,L) typical of continuous transitions. jectured first-order transition in the case fA>D5._ .AI—
The correlation exponent can be estimated by the size though we cannot completely rule out the possibility of a
dependence of (¥)d¥g/dp), <L whereWg=pglp. V€Y yveak flrst-prder trgnsﬁmn, the data in this case also
¢ exhibit a finite size scaling typical of a second-order phase
Sransition with a new class of critical exponents. Further-
more, for the case dD,<Dg the field-theory prediction of
B=1 is also not supported. These two results clearly indicate
that the truncated higher-order terms on the action functional
employed in the field-theoretical analysis are relevand in
=1. It would be valuable to have these terms included in a
future field-theoretical analysis of this low-dimensional sys-
tem in order to have reliable analytical estimates for the full
. SUMMARY AND CONCLUSIONS set of critical exponents on all relevant regimes.

Our results are depicted in Fig. 6. The small curvature of th
plotted data(especially forD,=Dg) indicates that a small
correction to scaling is present. In order to verify the
renormalizaton group result that=2/d, we fitted our
data considering a first-order correction to scaling
[(1/\IfB)d\IfB/dp|pcocL1’2(1+a0/L)]. The fits fully support

that v=2 for all three universality classes.

We have employed a finite size scaling analysis of Monte
Carlo data for a diffusion-limited two-particle reaction that
mimics the process of an epidemic propagation. A phase The authors would like to thank L. Lucena and G.
transition takes place between a steady state and a vacuwiiswanathan for fruitful discussions. This work was partially
state as a function of the total particle density. Previousupported by the Brazilian research agencies CNPq and
renormalization group results have shown that the criticaCAPES and by the Alagoas State agency FAPEAL.
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